博客
关于我
cin加速(关闭同步流)&快读&快写
阅读量:387 次
发布时间:2019-03-04

本文共 370 字,大约阅读时间需要 1 分钟。

C++中的cin效率低并非简单地因为比C低级,而是由于其将输出操作存入缓冲区进行批量处理,虽然提高了效率,但在特定场景下可能带来性能瓶颈。这种设计理念源于对C兼容性的考虑。

解除标准I/O绑定是优化cin速度的关键步骤。建议避免同时使用cout和其他标准I/O函数,以免引发IO冲突。通过设置ios::sync_with_stdio(false);cin.tie(0);可以完全解除与cout的绑定,减少IO操作的开销。

此外,使用自定义的快读和快写函数可以进一步提升cin的处理效率。快读函数通过直接处理字符输入避免了标准的字符串转换过程,而快写则采用逆向构建数值的方式减少了输出缓冲时间。

需要注意的是,快读方法适用于处理单个数值的场景,而大量空格或复杂格式的数据则可能影响其性能。因此,在实际应用中应根据具体需求选择最优的读写方式。

转载地址:http://cwbg.baihongyu.com/

你可能感兴趣的文章
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>
nmap使用
查看>>
nmap使用实战(附nmap安装包)
查看>>
Nmap哪些想不到的姿势
查看>>